YOLOv3目标检测实战:网络模型改进方法
YOLOv3是一种基于深度学习的端到端实时目标检测方法,以速度快见长。
本课程将学习YOLOv3实现darknet的网络模型改进方法。具体包括:
• PASCAL VOC数据集的整理、训练与测试
• Eclipse IDE的安装与使用
• 改进1:不显示指定类别目标的方法 (增加功能)
• 改进2:合并BN层到卷积层 (加快推理速度)
• 改进3:使用GIoU指标和损失函数 (提高检测精度)
• 改进4:tiny YOLOv3 (简化网络模型)
• AlexeyAB/darknet项目介绍
除本课程《YOLOv3目标检测实战:网络模型改进方法》外,本人推出了有关YOLOv3目标检测的系列课程,请关注该系列的其它课程,包括:
《YOLOv3目标检测实战:训练自己的数据集》
《YOLOv3目标检测实战:交通标志识别》
《YOLOv3目标检测:原理与源码解析》
在学习课程《YOLOv3目标检测实战:网络模型改进方法》前,建议先学习课程《YOLOv3目标检测实战:训练自己的数据集》和课程《YOLOv3目标检测实战:交通标志识别》之一和课程《YOLOv3目标检测:原理与源码解析》。
复制链接