成功

扫码支付

购买商品:
商品价格:

价格读取中

支付方式:
微信

请扫码进行支付

支付宝

请扫码进行支付

二维码已过期,请点击刷新

YOLOv3目标检测实战:训练自己的数据集

白勇
研究员/教授
大学教授,美国归国博士、博士生导师;人工智能公司专家顾问;长期从事人工智能、物联网、大数据研究;已发表学术论文100多篇,授权发明专利10多项
显示更多
【课程介绍】
YOLOv3是一种基于深度学习的端到端实时目标检测方法,以速度快见长。本课程将手把手地教大家使用labelImg标注和使用YOLOv3训练自己的数据集。课程分为三个小项目:足球目标检测(单目标检测)、梅西目标检测(单目标检测)、足球和梅西同时目标检测(两目标检测)。

本课程的YOLOv3使用Darknet,在Ubuntu系统上做项目演示。包括:安装Darknet、给自己的数据集打标签、整理自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型、性能统计(mAP计算和画出PR曲线)和先验框聚类。

Darknet是使用C语言实现的轻型开源深度学习框架,依赖少,可移植性好,值得深入探究。

除本课程《YOLOv3目标检测实战:训练自己的数据集》外,本人推出了有关YOLOv3目标检测的系列课程,请持续关注该系列的其它课程视频,包括:

《YOLOv3目标检测实战:交通标志识别》

《YOLOv3目标检测:原理与源码解析》

《YOLOv3目标检测:网络模型改进方法》

敬请关注并选择学习!

阅读更多
【课程收益】
学习和掌握YOLOv3目标检测训练自己的数据集方法
掌握图像标注方法
掌握YOLOv3数据集整理方法
掌握YOLOv3训练、测试、性能统计方法
手机看
关注公众号

关注公众号

下载APP

下载APP

客服 帮助 返回
顶部