掌握YOLOv8训练垃圾分类目标检测数据集的方法
获得超万张已标注目标检测数据集
学习YOLOv8 PySide6 GUI可视化演示界面
你将收获
掌握YOLOv8训练垃圾分类目标检测数据集的方法
获得超万张已标注目标检测数据集
学习YOLOv8 PySide6 GUI可视化演示界面
适用人群
课程介绍
垃圾分类是一项利国利民的民生工程,需要全社会的共同参与。 YOLOv8是前沿的目标检测技术,它基于先前 YOLO 版本在目标检测任务上的成功,进一步提升性能和灵活性。
本课程将手把手地教大家使用YOLOv8训练垃圾分类数据集,完成一个多目标检测实战项目。项目利用超万张已标注的目标检测数据集进行训练,对居民生活垃圾图片进行检测,找出图片中属于哪个类别的垃圾,并指示出在图片中的位置。项目完成后可实时检测图像、视频、摄像头和流媒体(http/rtsp)中44个类别的分类垃圾,并提供可视化演示界面 。
本课程分别在Windows和Ubuntu系统上做项目演示。包括:数据集及格式转换、探索性数据分析(EDA)、安装软件环境(Nvidia显卡驱动、cuda和cudnn)、安装PyTorch、安装YOLOv8、 准备数据集(自动划分训练集和验证集)、修改代码(支持中文标签显示)、修改配置文件、训练垃圾分类目标检测数据集(合适的命令参数选择)、测试训练出的网络模型和性能统计、GUI可视化演示界面使用PySide6开发,支持本地图片和视频推理、摄像头实时视频流推理、HTTP/RTSP流实时推理。
本课程新增了在阿里云上使用免费GPU算力的项目实战演示流程。GPU免费算力的领取方式和阿里云平台上的项目实战操作流程可见课程视频。
课程目录