- 深度学习
深度学习TensorFlow对话机器人实战全系列精品课
深度学习TensorFlow对话机器人实战全系列精品课 :一、课程优势本课程有陈敬雷老师的清华大学出版社配套书籍教材《分布式机器学习实战》人工智能科学与技术丛书,新书配合此实战课程结合学习,一静一动,互补高效学习!本课程由互联网一线知名大牛陈敬雷老师全程亲自授课,技术前沿热门,这个《深度学习TensorFlow对话机器人实战全系列精品课》来自陈敬雷在一线大型互联网公司的多年实战经验总结,实实在在的重量级干货分享!二、课程简介 对话机器人是一个用来模拟人类对话或聊天的计算机程序,本质上是通过机器学习和人工智能等技术让机器理解人的语言。它包含了诸多学科方法的融合使用,是人工智能领域的一个技术集中演练营。在未来几十年,人机交互方式将发生变革。越来越多的设备将具有联网能力,这些设备如何与人进行交互将成为一个挑战。自然语言成为适应该趋势的新型交互方式,对话机器人有望取代过去的网站、如今的APP,占据新一代人机交互风口。在未来对话机器人的产品形态下,不再是人类适应机器,而是机器适应人类,基于人工智能技术的对话机器人产品逐渐成为主流。 对话机器人从对话的产生方式,可以分为基于检索的模型(Retrieval-Based Models)和生成式模型(Generative Models),基于检索我们可以使用搜索引擎的方式来做,基于生成式模型我们可以使用TensorFlow或MXnet深度学习框架的Seq2Seq算法来实现,同时我们可以加入强化学习的思想来优化Seq2Seq算法。 我们这个《深度学习TensorFlow对话机器人实战全系列精品课》从TensorFlow深度学习框架原理以及主流的神经网络算法讲起,逐步由浅入深的给大家详细讲解对话机器人项目的原理以及代码实现、并在公司服务器上演示如何实际操作和部署的全过程!! !深度学习TensorFlow对话机器人实战全系列精品课大纲如下:一、主流深度学习框架1、Tensorflow深度学习框架2、mxnet多GPU深度学习框架二、神经网络算法3、MLP多层感知机算法4、CNN卷积神经网络5、RNN循环神经网络,6、LSTM长短期记忆神经网络7、Seq2Seq端到端神经网络【可试听】8、GAN生成对抗网络9、深度强化学习DQN三、对话机器人实战10、对话机器人原理与介绍11、基于TensorFlow对话机器人项目实战【可试听】12、基于TensorFlow对话机器人模型训练前数据准备和处理13、基于TensorFlow对话机器人项目实战源码解析和Linux服务器训练模型过程操作实战14、基于TensorFlow对话机器人项目服务工程化和在Linux服务器上操作实战【可试听】15、基于MXNet对话机器人项目实战16、基于MXNet对话机器人项目实战源码解析17、基于MXNet对话机器人项目服务工程化和在Linux服务器上操作实战18、基于深度强化学习机器人19、基于搜索引擎对话机器人20、对话机器人的Web服务工程化三、老师介绍陈敬雷 充电了么创始人,CEO兼CTO陈敬雷,北京充电了么科技有限公司创始人,CEO兼CTO,十几年互联网从业经验,曾就职于用友、中软、凡客、乐蜂网(唯品会)、猎聘网、人民日报(灵思云途)、北京万朝科技,曾任架构师、首席技术官、首席科学家等职务,对业务领域B端、C端、电商、职场社交招聘、内容文娱、营销行业都有着丰富的经验,在技术领域,尤其在大数据和人工智能方向有丰富的算法工程落地实战经验,其中在猎聘网任职期间主导的推荐算法系统项目获得公司优秀项目奖,推荐效果得到5倍的提升。陈敬雷著有清华大学出版社两本人工智能书籍,分别是《分布式机器学习实战(人工智能科学与技术丛书)》、《自然语言处理原理与实战(人工智能科学与技术丛书)》。目前专注于大数据和人工智能驱动的上班族在线教育行业,研发了充电了么app和网站,用深度学习算法、nlp、推荐引擎等技术来高效提升在线学习效率。
共20节 319人已学习¥1098.0 免费试学 - 机器学习
AI算法架构师/推荐系统架构/搜索引擎架构/大数据用户画像系统架构
一、课程优势本课程有陈敬雷老师的清华大学出版社配套书籍教材《分布式机器学习实战》人工智能科学与技术丛书,新书配合此实战课程结合学习,一静一动,互补高效学习!本课程由互联网一线知名大牛陈敬雷老师全程亲自授课,技术前沿热门,是真正的互联网工业级实战项目。二、课程简介 大数据和算法类的系统和传统的业务系统有所不同,一个是多了离线计算框架部分,比如Hadoop集群上的数据处理部分、机器学习和深度学习的模型训练部分等,另一个区别就是大数据和算法类系统追求的是数据驱动、效果驱动,通过AB测试评估的方式,看看新策略是否得到了优化和改进。所以在系统架构上,需要考虑到怎么和离线计算框架去对接,怎么设计能方便我们快速迭代的优化产品,除了这些,像传统业务系统那些该考虑的也照样需要考虑,比如高性能、高可靠性、高扩展性也都需要考虑进去。这就给架构师非常高的要求,一个是需要对大数据和算法充分了解,同时对传统的业务系统架构也非常熟悉。 本节课就对当前几个热门的大数据算法系统架构(推荐系统架构设计、个性化搜索引擎架构设计、用户画像系统架构设计)做一个深度解析!1.个性化推荐算法系统 是一个完整的系统工程,从工程上来讲是由多个子系统有机的组合,比如基于Hadoop数据仓库的推荐集市、ETL数据处理子系统、离线算法、准实时算法、多策略融合算法、缓存处理、搜索引擎部分、二次重排序算法、在线web引擎服务、AB测试效果评估、推荐位管理平台等。如下就是我们要讲的个性化推荐算法系统架构图,请大家仔细欣赏、品味: 这节课我们就对推荐系统的整体架构和各个子系统做了详细的讲解,解开个性化推荐算法系统神秘的面纱!2.个性化搜索引擎 和个性化推荐是比较类似的,这个架构图包含了各个子系统或模块的协调配合、相互调用关系,从部门的组织架构上来看,目前搜索一般独立成组,有的是在搜索推荐部门里面,实际上比较合理的应该是分配在大数据部门更好一些,因为依托于大数据部门的大数据平台和人工智能优势可以使搜索效果再上一个新的台阶。下面我们来详细的讲一下整个架构流程的细节。如下就是我们要讲的个性化搜索架构图,请大家仔细欣赏、品味:这节课我们就对个性化搜索的整体架构和各个子系统做了详细的讲解,解开搜索引擎神秘的面纱! 3.大数据用户画像系统 用户画像是一个非常通用普遍使用的系统,从我们的架构图中可以看出,从数据计算时效性上来讲分离线计算和实时计算。离线计算一般是每天晚上全量计算所有用户,或者按需把用户数据发生变化的那批用户重新计算。离线计算主要是使用Hive SQL语句处理、Spark数据处理、或者基于机器学习算法来算用户忠诚度模型、用户价值模型、用户心理模型等。实时计算指定的通过Flume实时日志收集用户行为数据传输到Kafka消息队列,让流计算框架Flink/Storm/SparkStreaming等去实时消费处理用户数据,并触发实时计算模型,计算完成后把新增的用户画像数据更新搜索索引。个性化推荐、运营推广需要获取某个或某些用户画像数据的时候直接可以毫秒级别从搜索索引里搜索出结果,快速返回给调用方数据。这是从计算架构大概分了两条线离线处理和实时。下面我们从上到下详细看下每个架构模块。如下就是我们要讲的大数据用户画像架构图,请大家仔细欣赏、品味:这节课我们就对大数据用户画像系统的整体架构和各个子系统做了详细的讲解,解开用户画像系统神秘的面纱!三、老师介绍陈敬雷 充电了么创始人,CEO兼CTO陈敬雷,北京充电了么科技有限公司创始人,CEO兼CTO,十几年互联网从业经验,曾就职于用友、中软、凡客、乐蜂网(唯品会)、猎聘网、人民日报(灵思云途)、北京万朝科技,曾任架构师、首席技术官、首席科学家等职务,对业务领域B端、C端、电商、职场社交招聘、内容文娱、营销行业都有着丰富的经验,在技术领域,尤其在大数据和人工智能方向有丰富的算法工程落地实战经验,其中在猎聘网任职期间主导的推荐算法系统项目获得公司优秀项目奖,推荐效果得到5倍的提升。陈敬雷著有清华大学出版社两本人工智能书籍,分别是《分布式机器学习实战(人工智能科学与技术丛书)》、《自然语言处理原理与实战(人工智能科学与技术丛书)》。目前专注于大数据和人工智能驱动的上班族在线教育行业,研发了充电了么app和网站,用深度学习算法、nlp、推荐引擎等技术来高效提升在线学习效率。
共7节 280人已学习¥168.0 免费试学 - 机器学习
推荐算法系统CF协同过滤用户行为挖掘
推荐算法系统CF协同过滤用户行为挖掘 :一、课程优势本课程有陈敬雷老师的清华大学出版社配套新书教材《分布式机器学习实战》人工智能科学与技术丛书,新书配合此实战课程结合学习,一静一动,互补高效学习!本课程由互联网一线知名大牛陈敬雷老师全程亲自授课,技术前沿热门,是真正的互联网工业级实战项目。二、课程简介 协同过滤 (Collaborative Filtering, 简称 CF)作为经典的推荐算法之一,在电商推荐推荐系统中扮演着非常重要的角色,比如经典的推荐为如看了又看、买了又买、看了又买、购买此商品的用户还相同购买等都是使用了协同过滤算法。尤其当你网站积累了大量的用户行为数据时,基于协同过滤的算法从实战经验上对比其他算法,效果是最好的。基于协同过滤在电商网站上用到的用户行为有用户浏览商品行为,加入购物车行为,购买行为等,这些行为是最为宝贵的数据资源。比如拿浏览行为来做的协同过滤推荐结果叫看了又看,全称是看过此商品的用户还看了哪些商品。拿购买行为来计算的叫买了又买,全称叫买过此商品的用户还买了。如果同时拿浏览记录和购买记录来算的,并且浏览记录在前,购买记录在后,叫看了又买,全称是看过此商品的用户最终购买。如果是购买记录在前,浏览记录在后,叫买了又看,全称叫买过此商品的用户还看了。在电商网站中,这几个是经典的协同过滤算法的应用。 下面就给大家直接深度解密推荐系统的最核心精髓部分!!!三、老师介绍陈敬雷 充电了么创始人,CEO兼CTO陈敬雷,北京充电了么科技有限公司创始人,CEO兼CTO,十几年互联网从业经验,曾就职于用友、中软、凡客、乐蜂网(唯品会)、猎聘网、人民日报(灵思云途)、北京万朝科技,曾任架构师、首席技术官、首席科学家等职务,对业务领域B端、C端、电商、职场社交招聘、内容文娱、营销行业都有着丰富的经验,在技术领域,尤其在大数据和人工智能方向有丰富的算法工程落地实战经验,其中在猎聘网任职期间主导的推荐算法系统项目获得公司优秀项目奖,推荐效果得到5倍的提升。陈敬雷著有清华大学出版社两本人工智能书籍,分别是《分布式机器学习实战(人工智能科学与技术丛书)》已出版、《自然语言处理原理与实战(人工智能科学与技术丛书)》。目前专注于大数据和人工智能驱动的上班族在线教育行业,研发了充电了么app和网站,用深度学习算法、nlp、推荐引擎等技术来高效提升在线学习效率。
共4节 134人已学习¥88.0 免费试学 - ETL
推荐系统ETL数据分析处理
推荐算法系统ETL数据处理实战 :一、课程优势本课程有陈敬雷老师的清华大学出版社配套新书教材《分布式机器学习实战》人工智能科学与技术丛书,新书教材配合此实战课程结合学习,一静一动,互补高效学习!本课程由互联网一线知名大牛陈敬雷老师全程亲自授课,技术前沿热门,是真正的互联网工业级实战项目。二、课程简介 搭建完数据仓库和平台之后,我们日常很多工作会做数据处理,也就是ETL,ETL分全量和增量两种处理方式,在推荐系统占用的工作量是比较大的,做一个算法系统,ETL数据处理的也是必须的。 下面来讲讲推荐的ETL数据处理是如何做的?我让我们体验下真实的用户实战场景!三、老师介绍陈敬雷 充电了么创始人,CEO兼CTO陈敬雷,北京充电了么科技有限公司创始人,CEO兼CTO,十几年互联网从业经验,曾就职于用友、中软、凡客、乐蜂网(唯品会)、猎聘网、人民日报(灵思云途)、北京万朝科技,曾任架构师、首席技术官、首席科学家等职务,对业务领域B端、C端、电商、职场社交招聘、内容文娱、营销行业都有着丰富的经验,在技术领域,尤其在大数据和人工智能方向有丰富的算法工程落地实战经验,其中在猎聘网任职期间主导的推荐算法系统项目获得公司优秀项目奖,推荐效果得到5倍的提升。 陈敬雷著有清华大学出版社两本人工智能书籍,分别是《分布式机器学习实战(人工智能科学与技术丛书)》已出版、《自然语言处理原理与实战(人工智能科学与技术丛书)》。 目前专注于大数据和人工智能驱动的上班族在线教育行业,研发了充电了么app和网站,用深度学习算法、nlp、推荐引擎等技术来高效提升在线学习效率。
共4节 295人已学习¥69.0 免费试学 - 推荐系统
推荐算法系统数据仓库集市实战
推荐算法系统的数据仓库集市设计实践 :一、课程优势本课程有陈敬雷老师的清华大学出版社配套书籍教材《分布式机器学习实战》人工智能科学与技术丛书新书配合此实战课程结合学习,一静一动,互补高效学习!本课程由互联网一线知名大牛陈敬雷老师全程亲自授课,覆盖技术面很广,课程内容来自陈敬雷老师在一线大型互联网公司的多年实战经验总结,技术最前沿的重量级干货分享!二、课程简介 算法是推荐系统的核心,但没有数据也是巧妇难为无米之炊,再就是也得有好米才行,有了好米,但好米里有沙子,我们也得想办法清洗掉。这是打了个比方,意思是除了算法本身我们要搭建数据仓库,把握好数据质量,对数据进行清洗、转换。那么更好区分那个是原始数据,那个是清洗后的数据,我们最好做一个数据分层,方便我们快速的找到想要的数据。另外,有些高频的数据不需要每次都重复计算,只需要计算一次放在一个中间层里,供其它业务模块复用,这样节省时间,同时也减少的服务器资源的消耗。数据仓库分层设计还有其他很多好处,下面举一个实例看看如何分层,如何搭建推荐的数据仓库集市?听完此课即可揭秘!!!三、老师介绍陈敬雷 充电了么创始人,CEO兼CTO陈敬雷,北京充电了么科技有限公司创始人,CEO兼CTO,十几年互联网从业经验,曾就职于用友、中软、凡客、乐蜂网(唯品会)、猎聘网、人民日报(灵思云途)、北京万朝科技,曾任架构师、首席技术官、首席科学家等职务,对业务领域B端、C端、电商、职场社交招聘、内容文娱、营销行业都有着丰富的经验,在技术领域,尤其在大数据和人工智能方向有丰富的算法工程落地实战经验,其中在猎聘网任职期间主导的推荐算法系统项目获得公司优秀项目奖,推荐效果得到5倍的提升。陈敬雷著有清华大学出版社两本人工智能书籍,分别是《分布式机器学习实战(人工智能科学与技术丛书)》已出版、《自然语言处理原理与实战(人工智能科学与技术丛书)》。目前专注于大数据和人工智能驱动的上班族在线教育行业,研发了充电了么app和网站,用深度学习算法、nlp、推荐引擎等技术来高效提升在线学习效率。
共4节 178人已学习¥69.0 免费试学 - 推荐系统
推荐算法系统实战全系列精品课
推荐算法系统实战全系列精品课 :一、课程优势本课程有陈敬雷老师的清华大学出版社配套新书教材《分布式机器学习实战》人工智能科学与技术丛书,新书配合此实战课程结合学习,一静一动,互补高效学习!本课程由互联网一线知名大牛陈敬雷老师全程亲自授课,技术前沿热门,这个《推荐算法系统实战全系列精品课》来自陈敬雷在一线大型互联网公司的多年实战经验总结,比较完备的包含了各个算法系统模块,实实在在的重量级干货分享!听完此系列课,可以实现一个完整的推荐系统!二、课程简介 首先推荐系统不等于推荐算法,更不等于协同过滤。推荐系统是一个完整的系统工程,从工程上来讲是由多个子系统有机的组合,比如基于Hadoop数据仓库的推荐集市、ETL数据处理子系统、离线算法、准实时算法、多策略融合算法、缓存处理、搜索引擎部分、二次重排序算法、在线web引擎服务、AB测试效果评估、推荐位管理平台等,每个子系统都扮演着非常重要的角色,当然大家肯定会说算法部分是核心,这个说的没错,的确。推荐系统是偏算法的策略系统,但要达到一个非常好的推荐效果,只有算法是不够的。比如做算法依赖于训练数据,数据质量不好,或者数据处理没做好,再好的算法也发挥不出价值。算法上线了,如果不知道效果怎么样,后面的优化工作就无法进行。所以AB测试是评价推荐效果的关键,它指导着系统该何去何从。为了能够快速切换和优化策略,推荐位管理平台起着举足轻重的作用。推荐效果最终要应用到线上平台去,在App或网站上毫秒级别的快速展示推荐结果,这就需要推荐的在线Web引擎服务来保证高性能的并发访问。这么来说,虽然算法是核心,但离不开每个子系统的配合,另外就是不同算法可以嵌入到各个子系统中,算法可以贯穿到每个子系统。 从开发人员角色上来讲,推荐系统不仅仅只有算法工程师角色的人就能完成整个系统,需要各个角色的工程师相配合才行。比如大数据平台工程师负责Hadoop集群和数据仓库,ETL工程师负责对数据仓库的数据进行处理和清洗,算法工程师负责核心算法,Web开发工程师负责推荐Web接口对接各个部门,比如网站前端、APP客户端的接口调用等,后台开发工程师负责推荐位管理、报表开发、推荐效果分析等,架构师负责整体系统的架构设计等。所以推荐系统是一个多角色协同配合才能完成的系统。 下面我们就从推荐系统的整体架构以及各个子系统的实现给大家深度解密来自一线大型互联网公司重量级的实战产品项目!!!推荐算法系统实战课程大纲如下:1、推荐系统架构设计2、推荐数据仓库集市3、推荐系统ETL数据处理4、CF协同过滤用户行为挖掘5、推荐算法ALS交替最小二乘法6、推荐系统ContentBase文本挖掘算法7、用户画像兴趣标签提取算法8、基于用户心理学模型推荐9、推荐系统多策略融合算法10、准实时在线学习推荐引擎11、Redis分布式缓存处理12、分布式搜索引擎13、推荐Rerank二次重排序算法(基于逻辑回归、GBDT、随机森林、神经网络的算法思想做二次排序)【可试听】14、推荐Rerank二次重排序算法(基于Learning TO rank排序学习思想做二次排序)15、推荐Rerank二次重排序算法(基于加权公式思想做二次排序)16、在线Web实时推荐引擎服务原理及核心处理算法17、在线Web实时推荐引擎服务核心源代码解析18、在线AB测试推荐效果评估19、离线AB测试推荐效果评估20、推荐位管理平台 21、大数据用户画像系统架构图深度解密与详细介绍22、大数据用户画像系统中各个子系统详细讲解三、老师介绍陈敬雷 充电了么创始人,CEO兼CTO陈敬雷,北京充电了么科技有限公司创始人,CEO兼CTO,十几年互联网从业经验,曾就职于用友、中软、凡客、乐蜂网(唯品会)、猎聘网、人民日报(灵思云途)、北京万朝科技,曾任架构师、首席技术官、首席科学家等职务,对业务领域B端、C端、电商、职场社交招聘、内容文娱、营销行业都有着丰富的经验,在技术领域,尤其在大数据和人工智能方向有丰富的算法工程落地实战经验,其中在猎聘网任职期间主导的推荐算法系统项目获得公司优秀项目奖,推荐效果得到5倍的提升。陈敬雷著有清华大学出版社两本人工智能书籍,分别是《分布式机器学习实战(人工智能科学与技术丛书)》已出版、《自然语言处理原理与实战(人工智能科学与技术丛书)》。目前专注于大数据和人工智能驱动的上班族在线教育行业,研发了充电了么app和网站,用深度学习算法、nlp、推荐引擎等技术来高效提升在线学习效率。
共22节 390人已学习¥99.0 免费试学
- 1
陈敬雷
CEO兼CTO
陈敬雷 充电了么创始人,CEO兼CTO,十几年互联网从业经验,曾就职于用友、中软、凡客、乐蜂网(唯品会)、猎聘网、人民日报(灵思云途)、北京万朝科技,曾任架构师、首席技术官、首席科学家等职务,对业务领域B端、C端、电商、职场社交招聘、内容文娱、营销行业都有着丰富的经验,在技术领域,尤其在大数据和人工智能方向有丰富的算法工程落地实战经验,其中在猎聘网任职期间主导的推荐算法系统项目获得公司优秀项目奖,推荐效果得到5倍的提升。
陈敬雷著有清华大学出版社两本人工智能书籍,分别是《分布式机器学习实战(人工智能科学与技术丛书)》、《自然语言处理原理与实战(人工智能科学与技术丛书)》。
课程数 6 学生数 1596