成功

扫码支付

购买商品:
商品价格:

价格读取中

支付方式:
微信

请扫码进行支付

支付宝

请扫码进行支付

二维码已过期,请点击刷新

李虎
开发组长/高级工程师
李虎,联想集团PCSD业务UDS平台推荐算法团队开发负责人,曾获2018-2019年度联想集团中国区优秀员工。在联想内部,做过多次企业内训和技术支持,并在北京线下技术沙龙分享会上作为演讲嘉宾分享算法实战应用效果,拥有丰富的线上,线下培训经验。对机器学习,深度学习算法建模,推荐系统,大数据有多年的实际经验。CSDN博客专家,著有大白话算法系列,以通俗生动的方式讲解人工智能前言算法。愿景是打造全网AI最通俗教学,赠人玫瑰,手有余香,在人工智能前行的路上一起前行,以通俗简介详细的方式,让每一位热爱着深入其中。
显示更多
本课程共计335分钟,26节,如果每天学习1小时,预计学习6天。
课程简介
以通俗简介的方式,从浅入深介绍SVM原理和代码流程 让你从此不再惧怕SVM



视频部分:

01_SVM之回顾梯度下降原理
02_SVM之回顾有约束的最优化问题
03_SVM之回顾有约束的最优化问题-KKT几何解释
04_SVM之回顾有约束的最优化问题-KKT数学解释
05_SVM之回顾距离公式和感知器模型
06_SVM之感知器到SVM的引入
07_SVM之线性可分时损失函数的表示
08_SVM之线性可分时损失函数的求解-对w,b变量求偏导
09_SVM之线性可分时损失函数的求解-对β变量求解.
10_SVM之线性可分时算法整体流程
11_SVM之线性可分时案例
12_SVM之线性不可分时软间隔介绍
13_SVM之线性不可分时软间隔优化目标
14_SVM之线性不可分时软间隔算法整体流程
15_SVM之线性不可分时数据映射高维解决不可分问题
16_SVM之线性不可分时核函数引入
17_SVM之线性不可分时核函数讲解
18_SVM代码之线性可分时和Logistic回归比较
19_SVM代码之基于鸢尾花数据多分类参数解释
20_SVM代码之基于鸢尾花数据网格搜索选择参数
21_SVM代码之不同分类器,核函数,C值的可视化比较

22_SVM之回归方式SVR

23_SVM代码之SVR解决回归问题

24_SVM之SMO思想引入

25_SVM之SMO案列讲解


代码部分:


资料部分:

你将收获
以通俗的语言了解SVM算法和思想
掌握SVM系列知识
将SVM代码应用到实际工作中
第一章:SVM前置知识回顾
第二章:SVM之线性可分--硬间隔
第三章:SVM之线性不可分--软间隔
第四章:SVM之线性不可分--核函数解决方案
第五章:SVM代码实战
第六章:SVM解决回归问题--SVR
第七章:SVM求解未知参数方案--SMO思想
查看更多章节
查看更多笔记

加载中...

没有更多了

同学笔记空空如也

查看更多评价

加载中...

没有更多了

空空如也

手机看
关注公众号

关注公众号

下载APP

下载APP

客服 帮助 返回
顶部